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1. Introduction 

In the context of a simple random sample 
replication is randomly dividing a sample into 
groups so that each group is capable of estimat- 
ing a population parameter. Replication has 
become an important strategy in sampling theory. 
Not only does replication simplify the calcula- 
tions involved in a complex sampling scheme, but 
it also yields unbiased estimates of the variance 
of complex; nonlinear estimators. 

When one has an infinite population or is 

sampling with replacement, a rationale for the 
number of replicates is given by Des Raj in his 
sampling text (2). The purpose of this paper is 
to extend the formulas to finite populations. 
Furthermore, it is demonstrated that one only 
needs a moderate population size in order to 

ignore the process of sampling without replace- 
ment and use the simpler formulas of sampling 
with replacement as an approximation. 

When the sample design is a simple random 
sample of size n, the population total: 

N 

E xi 
i =1 

is usually estimated by the sample statistic: 
n 

Tsimple 
N x = Nx. 

n i =l 
Another estimator of T results from the tech- 
nique of replication. If r replicates of size m 
are selected, replication yields the estimator; 

where 

r 

T 
i =1 ti 

replicate r 

N E x.. 

ti m j =1 
th 

Thus, the subscript of x refers to the j- 
element in replicate i. 

Obviously, the expected value of Treplicate 
is: 

E(Treplicate) 
= 

E(t) 

m 
N E E(x) 

m i =1 

= N.E(x) (1.1) 

= E(Tsimple). (1.2) 

When one selects the sample units with replace- 
ment, the replicates are independent and it is 
obvious that the variance of T is: 

eplicate 

Var(Treplicate 
= r 

where () represents the central moment. 
Thus, wen n = mr: 

Var(Treplicate' 
r 

M2 E 

j=1 
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n 

If u = i (xi - x)2, then one can estimate Var 
n - 1 
unbiasedly by: 

n 

2 (x. 

2 

Var(T 
N i =1 

simple) n - 1 

= N2 
(x) 

mr 2 

M(x) n 2 

= Var(Tsimple)' 

(1.3) 

(1.4) 

= N2 u 
n 
E 

i 
where x = 

n 
. Also, by allowing ut = 

(1.5) 

(1.6) 

r 

E (ti - 

i =1 , one can estimate Var (Treplicate) 
r - 1 

unbiasedly with: 

E (ti t)2 

i=1 
var(Treplicate) 

r(r - 1) 

ut 

(1.7) 

(1.8) 

r 

where t = 
i =1 ti . 

r 

Up to this point there is no loss in effi- 

ciency by adopting a replicated design. However, 

there is a loss of efficiency in replicated 
designs caused by a decrease in the precision of 
the variance estimate (Raj, pg. 194). Remembering 
(1.6) one sees that the squared coefficient of 

variation of ) is: 

CV = CV (u) (1.9) 

and 

CV2 
replicat = CV2 

(ut) . (1.10) 

Because the right side of expressions (1.9) and 

(1.10) are more easily written and comprehended, 
they are used in the following comparisons. 

It is well known (Raj, pg. 190) that: 
2 1 n - 

CV (u) = 
x n - 1 (1.11) 

M4() 
where = , the kurtosis of a distribution. 



Thus, 

CV2 (u 
t) r ßt r - 1 

An easy calculation (Raj, 1964) yields: 

+ 3(m- 1)j 
and therefore: 

CV2 (ut) = - 3 + 2 

l r - 

The result (Raj, pg. 195) is that: 

(1.12) 

(1.13) 

One finds: 

Var(u) = M4 (x)ñ 
+1) 

2(n - 2)(n - 3)(2N - 3) 

n(n - 1)(N - 1)(N - 2)(N - 3) 

2 
(1.14) 

n(n - 1)(N - 1) 

)NM (x) 
n(n - 1)(N - 1) 

CV2(ut) - CV2(u) - 
(n - 1)(r r)1) > 

O.(1.15) 

For example, in a simple random sample of total 
size n 100 with r = 10 the variance estimate 
using the replicates has a squared coefficient of 
variation which is approximately 0.20 greater 
than the squared coefficient of variation of the 
variance estimate, u. One can observe from 
(1.15) that r should be as large as possible. 

2. The Stability of Variance Estimates 
When Sampling a Finite Population 

Suppose a sample of size n is drawn without 
replacement from a population of size N. Then 
the most common estimator of T: 

T = Nx 
remains of the same form as when sampling with 
replacement but the variance of T becomes: 

M (x) 
Var(T) (1 - N 1) 2n (2.1) 

An unbiased estimator of N M2(x)(usually 
N - 

referred to by sampling theory texts as S2) is: 

n (x. - 

u= E n -1 (2.2) 
i =1 

One must derive the variance of u under the con- 
dition of sampling without replacement. The 
details are not given in this paper, but if they 
are requested will be furnished by the author. 
One can derive: 

E(u2) = M4 (x) 1 - 11 
N - 1 n 

2 

- 1) + (x) - M4 
(4+ 

1 ( 4) (M4 (x) + 2(n - 2) (n - 3) 
N - 1 n (N - 1)(N - 2)(n)(n - 1 

[2 

2 

l(x) 

- 2M4 (x)5+ 

3(n - 2) 3) 

(N - 1) (N - 2) (N - 3) (n) (n - 1)) 

(x) - 2M4 (x)). (2.3) 

The result, (2.3) can be found in a different 
form in a sampling text (Hansen, Hurwitz, Madow; 
page 101; Volume II). 
By substracting the term E(u)2 from both sides of 
(2.13) and remembering that: 

2 

n - 1 + (n - 2)(n -3)(2N - 3) 

+ n(N - 1) n(n - 1) (N - 1) (N - 2) (N - 3) 

N 

(N - 1)2 
After a great deal of algebra (2.5) can be 
simplified into the form: 

Var(u) = D1 M4 (x) D2 (x) 

where: 

N(N - n) Ç(N - 1) (n - 1) - 

D1 n(n - 1)(N - 1)(N - 2)(N - 3) 

D 
N(N - n)(3N2 - nN2 - 6N + 3cí + 3) (2.8) 

2 - 1) (N - 1) 2 (N - 2) (N - 3) 

There are a few properties of D. and D2 that 
should be pointed out. 

Theorem 2.1: If n = N, then D1 = D2 = O. 

(2.5) 

(2.6) 

(2.7) 

The proof is obvious. 

Theorem 2.2: With simple random sampling from a 
a finite population: 

lim Var(u) = (x) - i (x) (2.9) 

Again the proof is obvious. As expected, 
(2.9) is the variance of u when sampling with 
replacement (Raj, pg. 190) and will be used as a 
large size approximation to Var(u). 

Theorem 2.3: If n strictly increases, the vari- 
ance of u strictly decreases. 

The proof is accomplished by showing that 
both D1 and D2 decrease as n increases. By re- 
writing (2.8): 

D2 

n(n - 1)(N - 1)2 (N - 2)(N - 3) 

it is evident that as n increases the denominator 
increases and the numerator decreases if N > 3. 
(The restriction on N is inconsequestial because 
N must be greater than 3 to prevent division by 
zero.) 

It is also true that as n increases, D. 

decreases, but the proof required is more tedious. 
Suppose n increases by one then from (2.7) 

(D In) - 
N(N - n) {(N - 1)(n - 1) - 2) (2.10) 

1 n(n - 1)(N - 1)(N - 2)(N-- 3) 

(D In + 1) - N(N -n - 1) (N - 1)(n) - 2} (2,11) 
1 n(n + 1)(N - 1)(N - 2)(N - 3) 

Ignoring common factors, to prove (Dlln) > 

(D1ln + 1) one needs to show that: 

N(N n) 3N2 6N - n(N 
2 

- 3) + 3 

E(u) = N M2 (x) (2.4) (N - n) (nñ i n 1) (N - 
n + (nN 

- n - 2) 

(2.12) 
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Algebraically, (2.12) is equivalent to: 

N2n2 - Nn - Nn3 + n3 + 2n2 - N2 - Nn2 + n 
(n - 1) (n + 1) 

> N2n2 - Nn2 

(n - 1) (n + 1) 

- Nn3 + n3 - 2n2 - nN2 + 2N - n - 2 

(n - 1) (n + 1) 

After subtracting all terms on the left side of 
(2.12), one need only show for n > 1: 

Q = N 
2 

(n - 1) - N(n + 2) + 4n 
2 
+ 2n + 2 > 0.(2.14) 

When n = 2, (2.14) becomes Q = N2 - 4N + 22 > 0 

which is true for all N. 

(2.13) 

If n increases by one, then the change in Q, 1Q, 

is: 

.Q =N2 - N +8n +8 > 0 

for N > 0, n > 1. Thus, one proves (2.14) which 
proves (2.12) which in turn proves that C1 
strictly decreases as n strictly increases given 
N > 3, n > 1. Therefore, one has the property 
that as n strictly increases, the variance of u 
strictly decreases. 

Knowing the variance of u, formula (2.6) 

and remembering that E(u) = 
1 N 

(x); one finds: 

CV2(u) Cl + C2 

where: 
(N- 1)(N- n) {(N- 1)(n -1) -2} 

Cl n(n- 1)N(N- 2)(N -3) 

(N- n) {3N2 - nN2 - 6N + 3n + 3} 
C2 n(n -1) N (N -2)(N - 3) 

It is easy to see that the limit as N 4 

of formula (2.15) is formula (1.11), the formula 
for with replacement sampling. Table 1 displays 
the values of N where the difference in these 
two formulas in less than 0.01. Thus, for popu- 
lation sizes larger than those in the table one 
can forget the condition of with replacement 
sampling and use the simpler formulas of without 
replacement sampling. 

3. Determining the Number of Replicates 

Now one should consider two situations that often 
arise in relicated sampling. 
Case 1: R relicates of size m are constructed 

(perhaps in a nonrandom manner) from a 
population. Assuming a without replace- 
ment structure within each replicate, 
how many replicates are needed to achieve 
a desired level of the coefficient of 
variation? 

A good example of this situation is where the 
population is ordered according to some arbitrary 
criteria and replicates are formed systematically. 
When replicates are not formed randomly, the 
cbvious method of estimating any coefficient of 
variations is to consider each replicate as a 
sampling unit and to estimate the distribution 
of the replicates. Thus, to estimate the 
coefficient of variation of u (1.7 and 1.8), one 
uses (2.26) and substitutes tte corresponding 
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parameters from the population of replicates. 
Case 2: Suppose one must randomly select r 

replicates. Within each replicate units 

are chosen without replacement. However, 
each replicate may contain any unit in 
the population. 

One still uses the with replacement formula of 
Rai: 

CV2 ßt r - 1 
(3.1) 

Now ß is also subject to the laws of without 

replacement sampling. It is possible to derive 
in terms of The derivation is again quite 

tedious, but details will be furnished by the 

author upon request. 

One can derive: 

4 
M4(t) 

3 1) 

m 

- M4(x)ll 
4 
Ñm- 1j) M 

4 
(x) 

6 m(m - 1)(m - 2) 

(N - 1) (N - 2) (2 M(x) - NM2(x) 4 

3 m(m - 1)(m - 2)(m - 3) 
- 2M (x) 

(N - 1) (N - 2) (N - 3) 2 4 

Algebra yields the result: 

3 

N4(N - m) 

m (N - 1) (N - 2) (N - 3) 

EN(m - 1)(N - m - 1) M2(x) 

+ (N2 - 6 m N + 6m2 + N) M4(x)1 (3.2) 

Thus, by dividing expression (3.2) by the square 
of M2(t) one finds that: 

(N - 1) 

m (N - m)(N - 2)(N - 3) 

N26+6m2+N - 

(3.3 

One should note that when m = 1, -ß and as N 
approaches m, expression (3.3) beccmea (1.13). 
Table 2 shows those values of N such that the 

without replacement formula for (3.3), can be 
approximated by the with replacement formula, 
(1.13). These values of N are extremely low. 

One should also note that in both Tables 1 and 
2 the formulas are not monotonic functions of N 
but curves. When computer programs were written 
to compute the tables, this fact showed up as 
irregularities in the tables, However, corrections 
were made, and calculations were performed to insure 
that N was large enough to compensate for curves 
in the functions. 



Table 1: Population sizes for which the coefficient of variation of the estimate of the population 

variance CV(ut), can be approximated by the formula CV(u) = n - 

= Kurtosis 

1.0 2.0 3.0 4.0 5.0 10.0 20.0 50.0 100.0 

2 100 102 104 111 116 139 178 263 363 

3 116 102 100 112 117 140 179 264 364 
4 123 110 113 119 125 154 203 306 425 

5 127 120 129 139 150 195 264 405 567 
6 130 129 145 160 174 233 321 499 701 

10 135 164 199 230 257 364 514 812 1146 
15 

25 

138 
140 

200 
258 

255 

342 

300 
408 

339 
465 

490 

681 

699 

978 

1110 
1559 

1570 
2210 

50 145 368 500 603 691 1020 1470 2347 3328 
100 147 528 725 877 1006 1488 2146 3426 4706 
500 502 1260 1714 2065 2097 2657 3601 6237 9170 

1000 1002 1468 1715 2066 2543 3543 5433 9398 13850 

Table 2: Values of N, population size, for which the calculation of (Kurtosis of replicates) differs 

by less than 0.1 between the with replacement and the without replacement formulas. 

x 
= Kurtosis 

1.0 2.0 3.0 4.0 5.0 10.0 20.0 50.0 100.0 

2 22 12 34 60 84 210 460 1210 2460 
3 30 15 45 78 111 279 612 1611 3276 
4 32 16 52 88 124 312 688 1812 3688 
5 35 20 55 95 135 335 735 1935 3935 
6 36 18 54 96 138 348 762 2016 4098 

10 30 30 60 110 150 380 830 2180 4430 
15 30 30 60 105 165 390 855 2265 4590 
25 50 50 75 125 175 400 875 2325 4725 
50 100 100 100 150 200 400 900 2400 4850 

100 200 200 200 200 200 400 900 2400 4900 
500 1000 1000 1000 1000 1000 1000 1000 2500 5000 

1000 2000 2000 2000 2000 2000 2000 2000 2000 5000 

Case 3: First one selects n units without re- 
placement from the population. These n 
units are then randomly selected without 
replacement to form r replicates of size 
m. 

Now one must use formula (2.16) to form: 

CV2(ut) Cl + C2 

where: 

(3.4) 

(N-1) 
Bt m(N - m(N - 2) (N - 3) 

EN2 6mN + 6m2 + N) + 

+ 3N(m 1) (N m (3.5) 

(R - 1)(R - r)(rR - R - r - 1) 
Cl 

r(r - 1) R (R - 2) (R - 3) (3.6) 

= 
(R - r) (3R2 - rR - 6R + 3r + 3) 

C2 r(r - 1) R (R - 2)(R - 3) 
(3.7) 
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Question l: If m is fixed, what should r be 
insure a specific level, a, of CV- 
(u) ? 

Because of theorem 2.3 it is possible to find_ 
the lowest value of r which satisfies the CV re- 
quirement by using a simple computer program. 
The computer program would use the method of 
bisection. It would: 

1: solve equation (3.12) for r* = 2 
(if CV2(ut) < at r* = 2, then r* 

is the solution and the problem is 
solved) 

2: solve for r ** A, where A is large 

even number 

3: solve (3.12) for r' r ** 
2 

r* if r' 

is even and for r ** 
2 

r* 1 

otherwise 
4: if CV2(ut) at r', then r ** is set 

equal r' and return to step 3 



5: if CV2(ut) > a at r, then r* is set 

equal to r' and return to step 3 

6: continue until r ** - r* = 2 and then 

set r' - r* + 1 

7: if CV2(ut) > a at r', then r ** is the 

solution; if CV2(ut) a at r', then 

r' is the solution. 

If N is large enough (see Table 1 and Table 
2), one may use the simpler, with replacement 
formulas for C 

l' 
and C2. 

If one can make the large population assump- 
tion, one has: 

CV2(ut) = C1 + C2 (3.8) 

where: 

C 
1 1 r 

outlined above and substituting n/r for m in 
equation (3.5). To get a maximum r (thus, 
minimum m) one should substitute n/m = r and 
proceed iteratively (beginning with m = 2) through 
the calculations. 

Suppose from Tables 1 and 2 that large popu- 
lation approximations are appropriate. CV2(ut) is 
maximized for fixed n when m 2. One can see 
that: 

CV2(u ) 
1 3(m - 1 (3 - 

t r n r 

ßx+3(m- 1) m 3 - 
n n n 

+3(m- 1) +m(3m -n) 
(3.9) n n(n - m) 

It is obvious that CV2(ut) will increase with an 
increase in m. Therefore, if n is fixed, m = 2 
will yield the lowest CV(ut). If one has other 
restrictions on the size of m, one can proceed 
inductively with larger values of m until these 
restrictions are met or until CV(ut) exceed an 
acceptable level. 

(1.11) Question III: If m, r, and n are unkown what 
values should they have to attain 

(1.12) a specific level, a, of CV2(ut)? 

Certainly a minimum n is determined by a 
desired accuracy on the mean or total estimate. 
From this minimum n one can compute the calcula- 
tions of CV2(ut) for m = 2 (when using the with 
replacement formula). If CV2(ut) is greater than 
the desired a, one can continue to n + 1 nd so 

forth because m 2 yields the minimum CV (ut) 

for a specific n. When a certain n satisfies the 
requirements, then one can proceed inductively 
on m. 

When using the with replacement formulas such 
principles can not be applied because it can not 
be shown that m = 2 yields a minimum CV2(ut) for 

a fixed m. 

C2 r (r - 1) 
(3.10) 

in place of equations (3.6) and (3.7) and: 

where: 

at 
= + 

1 

3(m - 1) 

2 m 

in place of equation (3.3). Thus, one can solve: 

CV2(u) = l {(a + X) + 

for r by use of the quadratic formula: 

r [a +a1 -1 

+ {(a + + - 1) 
2 

L 4a2 + - 

Example: Suppose = 17 and one desires an a of 

0.30 (i.e. CV(ut) 0.55). 

Then: 

and 

ßt=i2+2=10 

r = 
0.60 

[0.30 + 10 - 1 {(0.30 + 10 1)2 

- 4(0.30)2 (7)}1/2 ] 

r = 0.60 [9.3 + (86.49 - 2.52)1/2] 

r 30.8 or r = 0.20. 

Thus, one would select 31 replicates. 

Question II: Suppose n is *fixed, but m is not 
fixed. What combination of r and 
m best? 

When R is small, one can find a minimum r 
(thus, maximum m) by using the computer program 
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5. Conclusions 

From Table 1 one recognized the fact that 
most large sample surveys which sample without 
replacement may use the with replacement formulas 
of Raj as a good approximation. When the popula- 
tion sizes are small enough to require the exact 
formulas presented here, one can estimate the 
size and number of replicates needed to stabilize 

the variance estimator. These two factors --size 
and number- -are determined by a specific precision 
requirement on the estimated variance of a total. 
This paper only presents work on simple random 
samples. 
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